Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
World J Pediatr ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2245140

ABSTRACT

BACKGROUND: The number of pediatric cases of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has increased. Here, we describe the clinical characteristics of children in a tertiary children's medical center in Shanghai. METHODS: A total of 676 pediatric coronavirus disease 2019 (COVID-19) cases caused by the Omicron variant who were admitted to the Shanghai Children's Medical Center from March 28 to April 30, 2022 were enrolled in this single-center, prospective, observational real-world study. Patient demographics and clinical characteristics, especially COVID-19 vaccine status, were assessed. RESULTS: Children of all ages appeared susceptible to the SARS-CoV-2 Omicron variant, with no significant difference between sexes. A high SARS-CoV-2 viral load upon admission was associated with leukocytopenia, neutropenia, and thrombocytopenia (P = 0.003, P = 0.021, and P = 0.017, respectively) but not with physical symptoms or radiographic chest abnormalities. Univariable linear regression models indicated that comorbidities (P = 0.001) were associated with a longer time until viral clearance, and increasing age (P < 0.001) and two doses of COVID-19 vaccine (P = 0.001) were associated with a shorter time to viral clearance. Multivariable analysis revealed an independent effect of comorbidities (P < 0.001) and age (P = 0.003). The interaction effect between age and comorbidity showed that the negative association between age and time to virus clearance remained significant only in patients without underlying diseases (P < 0.001). CONCLUSION: This study describes the clinical characteristics of children infected with the Omicron variant of SARS-CoV-2 and calls for additional studies to evaluate the effectiveness and safety of vaccination against COVID-19 in children.

2.
Gastroenterology ; 163(1): 336-337, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830208
3.
Front Biosci (Landmark Ed) ; 27(2): 48, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1772157

ABSTRACT

BACKGROUND: Thymosin-α1 has been implicated into the treatment of novel respiratory virus Coronavirus Disease 2019 (COVID-19), but the underlying mechanisms are still disputable. AIM: Herein we aimed to reveal a previously unrecognized mechanism that thymosin-α1 prevents COVID-19 by binding with angiotensin-converting enzyme (ACE), which was inspired from the tool of network pharmacology. METHODS: KEGG pathway enrichment of thymosin-α1 treating COVID-19 was analyzed by Database of Functional Annotation Bioinformatics Microarray Analysis, then core targets were validated by ligand binding kinetics assay and fluorometric detection of ACE and ACE2 enzymatic activity. The production of angiotensin I, angiotensin II, angiotensin (1-7) and angiotensin (1-9) were detected by enzyme linked immunosorbent assay. RESULTS: We found that thymosin-α1 impaired the expressions of angiotensin-converting enzyme 2 and angiotensin (1-7) of human lung epithelial cells in a dose-dependent way (p < 0.001). In contrast, thymosin-α1 had no impact on their ACE and angiotensin (1-9) expressions but significantly inhibited the enzymatic activity of ACE (p > 0.05). CONCLUSION: The bioinformatic findings of network pharmacology and the corresponding pharmacological validations have revealed that thymosin-α1 treatment could decrease ACE2 expression in human lung epithelial cells, which strengthens the potential clinical applications of thymosin-α1 to prevent severe acute respiratory syndrome coronavirus 2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Humans , SARS-CoV-2 , Thymalfasin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL